Flat vector bundles and analytic torsion forms
نویسندگان
چکیده
منابع مشابه
Eta-invariants, torsion forms and flat vector bundles
We present a new proof, as well as a C/Q extension, of the RiemannRoch-Grothendieck theorem of Bismut-Lott for flat vector bundles. The main techniques used are the computations of the adiabatic limits of ηinvariants associated to the so-called sub-signature operators. We further show that the Bismut-Lott analytic torsion form can be derived naturally from the transgression of the η-forms appea...
متن کاملComplex Valued Analytic Torsion for Flat Bundles and for Holomorphic Bundles with (1,1) Connections
The work of Ray and Singer which introduced analytic torsion, a kind of determinant of the Laplacian operator in topological and holomorphic settings, is naturally generalized in both settings. The couplings are extended in a direct way in the topological setting to general flat bundles and in the holomorphic setting to bundles with (1,1) connections, which using the Newlander-Nirenberg Theorem...
متن کاملη-invariant and flat vector bundles II
We first apply the method and results in the previous paper to give a new proof of a result (hold in C/Z) of Gilkey on the variation of ηinvariants associated to non self-adjoint Dirac type operators. We then give an explicit local expression of certain η-invariant appearing in recent papers of Braverman-Kappeler on what they call refined analytic torsion, and propose an alternate formulation o...
متن کاملComplex Vector Bundles and Jacobi Forms
The elliptic genus (EG) of a compact complex manifold was introduced as a holomorphic Euler characteristic of some formal power series with vector bundle coefficients. EG is an automorphic form in two variables only if the manifold is a Calabi–Yau manifold. In physics such a function appears as the partition function of N = 2 superconformal field theories. In these notes we define the modified ...
متن کاملVector Bundles over Analytic Character Varieties
Let Qp ⊆ L ⊆ K ⊆ Cp be a chain of complete intermediate fields where Qp ⊆ L is finite and K discretely valued. Let Z be a one dimensional finitely generated abelian locally L-analytic group and let ẐK be its rigid Kanalytic character group. Generalizing work of Lazard we compute the Picard group and the Grothendieck group of ẐK . If Z = o, the integers in L 6= Qp, we find Pic(ôK) = Zp which ans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Séminaire de théorie spectrale et géométrie
سال: 2001
ISSN: 2118-9242
DOI: 10.5802/tsg.316